A posteriori Disclosure Risk Measure for Tabular Data Based on Conditional Entropy∗
نویسندگان
چکیده
Statistical database protection, also known as Statistical Disclosure Control (SDC), is a part of information security which tries to prevent published statistical information (tables, individual records) from disclosing the contribution of specific respondents. This paper deals with the assessment of the disclosure risk associated to the release of tabular data. So-called sensitivity rules are currently being used to measure the disclosure risk for tables. These rules operate on an a priori basis: the data are examined and the rules are used to decide whether the data can be released as they stand or should rather be protected. In this paper, we propose to complement a priori risk assessment with a posteriori risk assessment in order to achieve a higher level of security, that is, we propose to take the protected information into account when measuring the disclosure risk. The proposed a posteriori disclosure risk measure is compatible with a broad class of disclosure protection methods and can be extended for computing disclosure risk for a set of linked tables. In the case of linked table protection via cell suppression, the proposed measure allows detection of secondary suppression patterns which offer more protection than others.
منابع مشابه
Measuring Disclosure Risk and Information Loss in Population Based Frequency Tables
Frequency tables disseminated by statistical agencies have always been of high interest. However, the agencies have to ensure that the risk of identifying individuals and disclosing individuals’ attributes from the released data is low. Therefore they assess the risk of disclosure and apply statistical disclosure control (SDC) methods if necessary. The main objective of this work is to measure ...
متن کاملDisclosure Risk Measurement with Entropy in Two-Dimensional Sample Based Frequency Tables
We extend a disclosure risk measure defined for population based frequency tables to sample based frequency tables. The disclosure risk measure is based on information theoretical expressions, such as entropy and conditional entropy, that reflect the properties of attribute disclosure. To estimate the disclosure risk of a sample based frequency table we need to take into account the underlying ...
متن کاملRisk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process
This paper focuses on two main issues that are based on two important concepts: exponential Levy process and minimal entropy martingale measure. First, we intend to obtain risk measurement such as value-at-risk (VaR) and conditional value-at-risk (CvaR) using Monte-Carlo methodunder minimal entropy martingale measure (MEMM) for exponential Levy process. This Martingale measure is used for the...
متن کاملA Preferred Definition of Conditional Rényi Entropy
The Rényi entropy is a generalization of Shannon entropy to a one-parameter family of entropies. Tsallis entropy too is a generalization of Shannon entropy. The measure for Tsallis entropy is non-logarithmic. After the introduction of Shannon entropy , the conditional Shannon entropy was derived and its properties became known. Also, for Tsallis entropy, the conditional entropy was introduced a...
متن کاملInformation-Theoretic Disclosure Risk Measures in Statistical Disclosure Control of Tabular Data
Statistical database protection is a part of information security which tries to prevent published statistical information (tables, individual records) from disclosing the contribution of specific respondents. This paper shows how to use information-theoretic concepts to measure disclosure risk for tabular data. The proposed disclosure risk measure is compatible with a broad class of disclosure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003